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1 INTRODUCTION

Protein dynamics by NMR has been reviewed extensively in
recent years.1 – 4 These surveys show convincingly that infor-
mation on structure has to be complemented by information on
motion to properly characterize proteins and understand their
function. The timescale accessible by NMR extends from pi-
coseconds to days. Heteronuclear NMR spin relaxation applies
to the picoseconds to nanoseconds regime, with the slow limit
determined by the global tumbling of the protein, and the rate
for restricted internal motion of the probe (typically a small
protein-attached spin-bearing moiety) being faster.

We present in this article the slowly relaxing local structure
(SRLS) approach,5 – 7 which we developed for analyzing NMR
spin relaxation in proteins.8 – 10 This method is also suitable
to treat (in the appropriate limit) polycrystalline protein
samples,11 and analyze residual dipolar couplings (RDCs)
from proteins. SRLS is a mesoscopic stochastic approach to
rotational motions in liquids.5 So far, it has been implemented
as a two-body (protein and probe) coupled-rotator theory. With
SRLS, one solves a Smoluchowki equation within the scope
of tensorial descriptions of the two rotators, and of the local
ordering at the site of the motion of the probe. The solution
of the Smoluchowski equation yields the spectral densities
that enter the expressions for the experimentally measured
relaxation parameters.

The motion of the probe is restricted by its immediate
anisotropic protein surroundings. SRLS treats this motion by
analogy with the classical treatment of restricted motions in
liquids.12 – 15 One may consider it as the extension of these
approaches, which also accounts for the overall motion of the
protein and for the dynamical coupling between these two
dynamic modes. The main features of established standard
approaches are recovered in the limit where the two rotators
have significantly different timescales. However, the tensorial
properties are rarely simple for proteins in this limit.

The traditional method for analyzing NMR spin relaxation
in proteins is model-free (MF).16,17 The MF perspective is
different. Assuming that the dynamic complexity of proteins
warrants only the simplest description, MF devises analytical
spectral densities that implicitly treat only the simplest ten-
sorial properties and ignore mode-coupling. Since the former
are not simple in actual cases, the MF parameters absorb the
unaccounted for features, thereby becoming physically vague
composites. This is detrimental to the physical picture even
when mode-coupling is not important (by mode-coupling, we
mean effects from statistical interdependence of the various
motions).

The objective of this article is to present the approach
to spin relaxation in proteins, as represented by two-body
Smoluchowski SRLS. The reader is referred to our previous
work, which shows that SRLS has provided new insights
into protein dynamics, yet at a level that is in keeping with
the limited experimental data. Here we highlight the physical
clarity, consistency, and generality of the results. In contrast,
we delineate the serious limitations of the MF approach.

2 THE SLOWLY RELAXING LOCAL STRUCTURE

2.1 Diffusion-Restricted Local Motion with the Global

Motion Frozen

Nordio and Busolin12 and Freed and coworkers13 treated
diffusive rotational reorientation of an axial probe in a uniaxial
liquid crystal. These developments can also be viewed as
treatments of diffusion-restricted local motions in proteins,
with the global motion frozen. They are general in allowing
for an arbitrary tilt between the local ordering/local diffusion
and magnetic frames and also for magnetic tensors of arbitrary
symmetry and orientation. Polnaszek and Freed18 extended the
development of Ref. 13 by allowing rhombic local molecular
ordering.

In the theories developed in Refs 12, 13, one solves
the rotational diffusion equation for the probability density
P(Ω, t) for the orientation of the probe:

∂P (Ω, t)/∂t = −ΓΩP (Ω, t)

where

− ΓΩ = R∇Ω
2P(Ω, t)

− (R/kBT )(sin β)−1∂/∂β[sin βTP(Ω, t)] (1)

Equation (1) is appropriately referred to as a Smoluchowski
equation. Here ΓΩ is the Smoluchowski operator, R is the
isotropic rotational diffusion coefficient, ∇2

Ω is the rotational
diffusion operator in the Euler angles Ω → α, β, γ , and T is
the restoring torque. The latter is equal to −∂U/∂β in the
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case of an axial restoring potential, e.g., U ∼= 3/2 c2
0 cos2 β

(c2
0 is in units of kBT ). One diagonalizes the representation of

the operator ΓΩ , typically using the normalized forms of the
Wigner rotation matrix elements DL

KM(Ω) as a convenient
basis set, to obtain the eigenfunctions and eigenvalues of
ΓΩ . Then the time correlation functions (TCFs) of these
normalized DL

KM(Ω) (as well as their cross-correlation
functions with DL′

K ′M ′(Ω) where in general L′ �= L, K ′ �= K ,
and/or M ′ �= M) may be expressed in terms of these
eigenfunctions and eigenvalues. Their Fourier transforms yield
the spectral densities from which the magnetic resonance
relaxation parameters, such as T1, T2, and heteronuclear NOE,
are calculated.

These TCFs are generally found to be a sum of exponential
decays, where the decay constants are the respective eigen-
values and the weighting factor of each decaying exponential
gives the relative importance of that eigenfunction in the TCF.
The general expressions for rhombic R tensor and rhombic
potential U(Ω), which replace the respective quantities in the
ΓΩ of equation (1), are given in Ref. 18. Again, the TCFs
for the DL

KM(Ω) are found to be sums of exponential decays
determined by the eigenfunctions and eigenvalues of the more
general Smoluchowski operator ΓΩ .

2.2 Diffusion-Restricted Local Motion Decoupled from

the Global Motion

A simple limit of the two-body Smoluchowski SRLS
model describes a probe that reorients rapidly in a slowly
moving “cage”, which exerts on it a potential of mean torque
(POMT).19 In the present context, the cage represents the
protein and the probe represents the spin-bearing moiety. In the
simple limit, it is assumed that (i) the motions of the probe and
the cage occur on very different timescales, (ii) the properties
of the second-rank tensors involved are very simple, and
(iii) the local ordering is weak.

The TCF C(t) obtained by solving the appropriate Smolu-
chowski equation comprises three terms.19 They represent ef-
fects of the slow protein motion, the reorientation of the probe
with respect to the POMT, and a negative cross-term, which
represents their statistical interdependence from the point of
view of the probe. By analogy with the quantum mechani-
cal model of the motion of a low-mass particle relative to
a heavy particle, this was also called a Born–Oppenheimer
approximation19 (see also Ref. 20).

The Fourier transform of C(t) is given by Meirovitch et al10

as

j (ω) = (S2
0)2τm

(1 + ω2τm
2)

+ (1 − (S2
0)2τ)

(1 + ω2τ 2)
(2)

where S2
0 is the axial order parameter defined in terms

of a Legendre polynomial of rank 2, τm = 1/(6RC) is the
correlation time for the slow reorientation of the protein,
τ = 1/(6RL) is the correlation time for the faster (τ � τm)

reorientation of the probe, and RC and RL are rotational
rate constants. The local ordering/local diffusion and magnetic
frames are taken as the same, implying that j (ω) of equation
(2) is given by jKK(ω),K = 0 (K is the order of the rank 2
local ordering tensor). The measurable spectral density J (ω),

in terms of which the experimental relaxation parameters are
defined, is equal in this case to j00(ω).14,15

Note that the form of J (ω) is simple both because of
large timescale separation and because the symmetry-related
and geometry-related properties of the second-rank tensors
involved are simple. Finally, the eigenfunctions of the
diffusion operator of the probe are the same as the (Wigner)
eigenfunctions of the freely diffusing probe. This is an
approximation valid in the limit where the POMT is weak
and the ratio RC/RL is small.9,10

When a spherical particle reorients rapidly in the presence
of a strong axial POMT, simple eigenfunctions are obtained by
solving a simple diffusion equation.13,18 The solution yields a
“renormalized” correlation time τren ∼ 2τ/c2

0.18 In the limit
of a strong axial POMT and small ratio RC/RL, the full
SRLS solution features a dominant local motional correlation
time which agrees with τren

9,10,21 and has eigenfunctions
given in Ref. 18. In this limit, equation (2), with τ replaced
by τren, is a good approximation to the SRLS spectral
density.9 A convenient summary of the original derivation19

of equation (2) is presented in Ref. 10. It shows that this
equation is a reasonable result for all magnitudes of the axial
POMT.

2.3 Diffusion-Restricted Local Motion Coupled to the

Global Motion

The full two-body Smoluchowski SRLS theory as applied
to NMR spin relaxation in proteins is outlined in Refs 8–10.
A brief summary is given below. The SRLS frames are
shown in Figure 1(a); the magnetic tensors apply to N–H
bond dynamics. LF is the space-fixed laboratory frame with
its Z-axis parallel to the external magnetic field. M1F is the
principal axis system (PAS) of the global diffusion tensor RC.
VF is the local director. The M1F and VF frames are fixed
in the protein. The OF frame is the PAS of the local ordering
tensor S l. M2F is the PAS of the local diffusion tensor. RL,
DF is the PAS of the magnetic 15N– 1H dipolar tensor. CF is
the PAS of the 15N chemical shift anisotropy (CSA) tensor.
OF, M2F, DF, and CF are fixed in the probe.

The Euler angles ΩM1F−VF, ΩOF−M2F, ΩOF−DF, and
ΩDF−CF are time-independent. The time-dependent Euler
angles ΩLF−M1F are modulated by the global motion. The
distributed Euler angles ΩVF−OF are associated with the
local ordering. They enter the POMT and the equilibrium
probability distribution function Peq. The time-dependent
Euler angles ΩVF−M2F are modulated by the local motion.

For describing the local motion, we use a relative (probe
versus protein) coordinate scheme; that is, ΩM1F−OF(t) =
ΩLF−OF(t) − ΩLF−M1F(t).9,10,22 Each axial rotator when un-
coupled is associated with three decay rates, τ−1

K = 6R⊥ +
K2(R|| − R⊥),K = 0, 1, 2, where R stands for either RC

or RL.14,15 The two rotators are coupled by the POMT,
U(ΩVF−OF).6,7 The diffusion equation for the coupled system
is given by Meirovitch et al.9,10:

∂

∂t
P (X, t) = −Γ̂ P (X, t) (3)

where X is a set of coordinates completely describing the
system. One has
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Figure 1 (a) SRLS reference frames for spin relaxation analysis. LF—laboratory frame, with its Z-axis along the external magnetic field;
M1F—PAS of the global diffusion tensor; VF—local director frame; OF—PAS of the local ordering tensor, Sl; M2F—PAS of the local diffusion
tensor; DF—PAS of the 15N–1H dipolar tensor; CF—PAS of the 15N chemical shift anisotropy (CSA) tensor. The frames M1F and VF (colored red)
are fixed in the protein. The frames OF, M2F, DF, and CF (colored blue) are fixed in the probe. The boxed Euler angles are time-dependent/distributed.
(b) SRLS reference frames for RDC analysis. As in part (a), except that the frames M1F and M2F are omitted and the frames AF—PAS of the
global ordering tensor Sg and MF—molecular frame of the 3-D structure, are added

X = (ΩVF−OF, ΩLF−VF)

Γ̂ = Ĵ (ΩVF−OF)RLPeqĴ (ΩVF−OF)P
−1
eq

+ [Ĵ (ΩVF−OF) − Ĵ (ΩLF−VF)]RCPeq[Ĵ (ΩVF−OF)

− Ĵ (ΩLF−VF)]P
−1
eq (4)

where Ĵ (ΩVF−OF) and Ĵ (ΩLF−VF) are the infinitesimal
rotation operators for the probe and the protein, respectively.
Note that ΩLF−VF = ΩLF−M1F + ΩM1F−VF. That is, ΩLF−VF

represents the combined effects of rotations by both sets of
Euler angles on the right of this equation, where ΩM1F−VF is
time-independent.

The Boltzmann distribution is Peq = exp[−U(ΩVF−OF)/

kBT ]/〈exp[−U(ΩVF−OF)/kBT ]〉. In general, the potential
U(ΩVF−OF) is expanded in the full basis set of the Wigner
rotation matrix elements. When only the L = 2 terms are
preserved, one has9,10,22

u(ΩVF−OF) = U(ΩVF−OF)

kBT
≈ −c2

0D
2
0,0(ΩVF−OF)

− c2
2[D2

0,2(ΩVF−OF) + D2
0,−2(ΩVF−OF)] (5)

The coefficient c2
0 evaluates the strength of the POMF,

and c2
2 its nonaxiality. Expansion terms corresponding to L =

4, K = 0, 2, 4, (c4
0, c

4
2, and c4

4) are included in our most recent
computational scheme.22 They allow a more detailed model-
ing, in particular diffusion within two wells with less frequent
jumps between them.6,23 More general multipotential-well
models can be included by adding appropriate terms in the
expansion of U(ΩVF−OF). This is relevant for dynamics that
are more complex.

The local order parameters are defined as9,10,22

〈D2
0m(ΩVF−OF)〉
=

∫
dΩVF−OFD

2
0m(ΩVF−OF) exp[−u(ΩVF−OF)]∫

dΩVF−OF exp[−u(ΩVF−OF)]
(6)

We assume that at least threefold symmetry prevails around
the local director and at least twofold symmetry prevails
around the Z-axis of the local ordering frame. In this
case, only S2

l0 ≡ 〈D2
00(ΩVF−OF)〉 and S2

l2 ≡ 〈D2
02(ΩVF−OF) +

D2
0−2(ΩVF−OF)〉 survive.7 The Saupe scheme order parameters

relate to S2
l0 and S2

l2 as Sl,xx = (
√

3/2S2
l2 − S2

l0)/2, Sl,yy =
−(

√
3/2S2

l2 + S2
l0)/2, and Sl,zz = S2

l0. 14,15

Equation (3) is solved to yield the SRLS TCFs, which lead
by Fourier transformation to the spectral densities jK,K ′(ω) =∑
i

cK,K′,i τi

1+ω2τ2
i

.9,10,22 In practice, a finite number of terms is

sufficient for numerical convergence of the solution. The
jK,K ′(ω) functions are assembled into the measurable spectral
densities according to the local geometry.15 For N–H bond
dynamics, the relevant measurable spectral densities are J DD

for the 15N– 1H dipolar interaction and J CC for the 15N CSA
interaction. J DD depends on the Euler angles ΩOF−DF. J CC(ω)

is calculated from J DD(ω); it depends on the Euler angles
ΩOF−DF and ΩDF−CF.

Cross-correlated spin relaxation, featuring J XY(ω),
is treated in complete analogy with autocorrelated spin
relaxation.15 Thus, the calculation of J DD(ω) (J CC(ω))
from the Jkk′(ω) functions is based on the Wigner rotation
R(ΩOF−DF)(R(ΩOF−CF)), whereas the calculation of J DC(ω)

from the Jkk′(ω) functions is based on the Wigner rotation
R(ΩOF−DF) followed by the Wigner rotation R(ΩDF−CF).

For rhombic local ordering and an axial (e.g., dipolar)
magnetic interaction, six distinct pairs, K, K ′ = (0, 0), (1,1),
(2,2), (0,2), (−1, 1), and (−2, 2), have to be considered. The
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explicit expression for J DD(ω) is

J DD(ω) = (d2
00(βOF−DF))

2j00(ω) + 2(d2
10(βOF−DF))

2j11(ω)

+ 2(d2
20(βOF−DF))

2j22(ω)

+ 4d2
00(βOF−DF)d

2
20(βOF−DF)j02(ω)

+ 2d2
−10(βOF−DF)d

2
10(βOF−DF)j−11(ω)

+ 2d2
−20(βOF−DF)d

2
20(βOF−DF)j−22(ω) (7)

The 15N relaxation parameters T1, T2, and 15N–{1H}
NOE, are calculated as a function of J DD(0),

J DD(ωH), J DD(ωN), J DD(ωH − ωN), J DD(ωH + ωN), J CC(0),

J CC(ωH) (where ωH and ωN are the Larmor frequencies of
the 1H and 15N nuclei, respectively,) and the magnetic inter-
actions, using standard expressions for spin relaxation.24,25

The cross-correlated relaxation rates associated with N– H
bond dynamics, i.e., ηz and ηxy ,26 feature the measurable
spectral density obtained as outlined above, and the 15N– 1H
dipolar/15N CSA magnetic interaction cross-term.

For 2H relaxation in 13CDH2 methyl groups, one should
use the 2H quadrupolar tensor frame, QF, in Figure 1,
and replace “DF” with “QF” in equation (7).27 – 29 The
measurable spectral densities are J QQ(0), J QQ(ωD), and
J QQ(2ωD)(where ωD is the Larmor frequency of the 2H
nucleus).30 Together with the magnitude of the quadrupolar
interaction, they determine the experimental relaxation rates,
typically 2H T1 and T2, but also 2H double-quantum,
quadrupole order and transverse antiphase magnetization
relaxation rates,31 according to standard expressions for NMR
spin relaxation.30,31

In addition to the enhancements to the POMF mentioned
above, our most recent fitting scheme for SRLS22 allows sep-
arating the local ordering and the local diffusion frames, and
also allows for rhombic local (RL) and global (RC) diffu-
sion tensors. Importantly, the SRLS program has been inte-
grated with a hydrodynamics-based approach for calculating
anisotropic RC tensors.32 The programming language C++
has been used, the code parallelized, and object-oriented pro-
gramming used. These features brought about a 10-fold in-
crease in efficiency relative to the fitting scheme developed in
Ref. 9. We call this software package C++OPPS (COupled
Protein Probe Smoluchowski).22 It is available at the website
http://www.chimica/unipd.it/licc/software.html.

SRLS constitutes a useful theoretical/computational tool
for analyzing bio-macromolecular dynamics. Clearly, it is
not practical to use it in its most general form in a
given calculation. The parameter combination appropriate for
analyzing given experimental data is determined by requiring
both good correspondence between theory and experiment
and physical relevance of the results. For example, using
6-data-point 15N relaxation datasets acquired at two magnetic
fields, we found that allowing RL, c2

0, c
2
2, and βOF−DF to vary

is an appropriate approach.10,22

In the limit of large timescale separation and strong
POMTs, and in the (hypothetical) limit where τ of a
small probe is practically the same as τm, inertial aspects
of the probe motion could become important. In these
cases, a full Fokker–Planck–Kramers (FPK) treatment, also
developed in Ref. 5, is advisable. The implementation of
FPK SRLS to NMR spin relaxation in proteins is under
way.

2.4 SRLS Applications

We have studied 15N–1H amide group dyna-
mics8 – 10,21,22,33 – 39 and 13CDH2 methyl dynamics.10,27 – 29

Details appear in the respective references; here we only
summarize our main conclusions. The important factors that
affect the analyses include the asymmetry of the POMT, the
fact that in the presence of a POMT the eigenfunctions of
the (axial) local motional diffusion operator are no longer
simple, and the possibility of mode-coupling. For amide
bonds located in well-structured regions of the protein, the
dominant factor is the asymmetry of the POMT. For amide
bonds located in mobile domains and flexible loops, all the
factors mentioned above are important. For methyl dynamics,
mode-coupling is typically unimportant, but the other factors
are important.

N– H bonds reorient primarily around the Cα
i−1–Cα

i axis with
picosecond correlation times when located in well-structured
regions, and nanosecond correlation times when located
in mobile domains or flexible loops. In the former case,
the local ordering around Cα

i−1– Cα
i is strong with large

rhombicity; in the latter case, it is strong with moderate
rhombicity.8 – 10,21,22,33 – 39

The local ordering at methyl sites in proteins is weak and
rhombic, with the main local ordering axis parallel to the C–
CH3 bond. The local motion is typically fast relative to the
global motion. Variations in the form of the rhombic local
potential constitute the main factor determining the diversity
of the experimental data.10,27 – 29

Activation energies for the local motion have been obtained
for N– H bonds37 and methyl groups29 of entire proteins. This
is not a trivial achievement.

3 DECOUPLING PROTEIN DYNAMICS: THE

MODEL-FREE APPROACH

3.1 Model-free

Here it is assumed that the global and local motions are
statistically independent.16,17 On the basis of this assumption,
the total TCF, C(t), is factored into the product CC(t) × CL(t),
with CC(t) (CL(t)) denoting the TCF for global (local)
motion. For spherical proteins, one has CC(t) = exp(−t/τm).
The function CL(t) is devised on the basis of the theory
of moments. It is exact at times zero and infinity, at short
(picosecond) times it decays with an effective rate constant
1/τe to a plateau, and in the nanosecond regime it decays
exponentially to zero with rate constant 1/τm.16 The Fourier
transform of C(t) is given by

J (ω) = S2τm

(1 + ω2τm
2)

+ (1 − S2)τ
|
e

[1 + ω2(τ
|
e)2]

(8)

where 1/τ |
e = 1/τm + 1/τe, and 1/τ |

e ∼ 1/τe by virtue of τm,
ns 
 τe, ps.

Equation (8) is valid rigorously for a “frozen” protein,
with τm = ∞.16 Hence it is valid approximately for τm 

τe, the condition that underlies the assumption of statistical
independence. TCFs for restricted local motions are typically
multiexponential (section “Diffusion-Restricted Local Motion
with the Global Motion Frozen” and Refs 12–15). Only
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in limiting cases may a single decay constant be used as
an approximation. For wobble-in-a-cone in a square-well
potential, the cone vertex angle has to be smaller than
50◦.40 For wobble-in-a-cone in a cosine-squared potential, the
threshold is 15◦.9 For diffusive local motion in a strong axial
potential, the dimensionless coefficient c2

0 must be larger than
10 and the timescale separation larger than 100 for a single
correlation time given by 2τ/c2

0 to be valid.9

The parameter τe is defined as the area of the exact TCF for
internal motion divided by (1 − S2).16 This is a mathematical
definition. As pointed out above, model-related parameters are
limited by the range of physical validity of the respective
model. MF mathematical parameters are not limited.

The parameter S2 is set equal to CL(∞) ≡∑
m= 0,±1,±2

〈|Y2m(θ, ϕ)|〉2, where Y2m are the spherical

harmonics of Brink and Satchler.41 The angles θ and ϕ define
the orientation of a rhombic local ordering frame relative to
a uniaxial local director. In MF, the local ordering frame is
implicitly the same as the axial magnetic frames. A physical
frame cannot be both axial and rhombic.

S2 is considered as a measure of the amplitude of the
local motion.16,42 This interpretation, which is appropriate
in the limit when the local motion is so fast that its
effects (to the spectrum and spin relaxation) are completely
averaged out,7 prompted the utilization of S2 to calculate
conformational entropy.3,4 The physical meaning of the latter
quantity is thus problematic outside the limit where S2 →
(S2

0)2 = 〈P2(cos θ)〉2, θ is small, and τe → 0.
The MF spectral density16 is formally the same as equation

(2), which was obtained by solving the appropriate Smolu-
chowski equation.19 In particular, S2 is formally analogous to
(S2

0)2, and τe is formally analogous to τ for small S2 and to
τren for large S2 (on a 0–1 scale).9,10 Actual spectral densities
do not usually fulfill the validity conditions of equation (2);
hence, equation (8) is typically used outside of its range of
physical validity.

A comment on how MF addresses cross-correlated re-
laxation is in order. As pointed out above, the MF for-
mula represents j00(ω). Hence, for autocorrelated relaxation,
MF has to take J CC(ω) = J DD(ω) = J (ω). Similarly, for
cross-correlated relaxation, MF can only offer J XY(ω) =
(d2

00)j00(ω) as measurable spectral density,43 with the terms
containing j11(ω) and j22(ω) omitted. This will be appropri-
ate if RL

|| 
 RL
⊥, rendering j00(ω) much larger than j11(ω) and

j22(ω). This condition has been properly stated (in a somewhat
different form) in Ref. 43.

3.2 Extended MF

Besides a fast local motional term with correlation time τf
and squared order parameter S2

f , the EMF spectral density also
includes a slow local motional term with correlation time τs
and squared order parameter S2

s .44 The correlation time τs is
about 10 times smaller than τm for small loops, and comparable
to τm for mobile domains and large loops. The EMF formula
has also been derived on the basis of the theory of moments.16

Lin and Freed45 developed an extension of equation (2) for
weak rhombic ordering and axial diffusion (equation (B6) of
Ref. 45). For a 90◦ tilt between the axial magnetic frame and
the main local ordering axis, the measurable spectral density is

(within a good approximation) formally equivalent to the EMF
spectral density. However, the spectral density developed in
reference 45 includes general properties of the magnetic and
ordering tensors, rendering it physically very different from the
EMF spectral density. Thus, τf and τs become τL

|| = 1/6RL
|| and

τL
⊥ = 1/6RL

⊥, with RL
|| and RL

⊥ representing the components of
the axial local diffusion tensor, and Sf and Ss can be expressed
as functions of S2

0 and S2
2 , the components of the rhombic local

ordering tensor.45 The SRLS parameters have been obtained
by solving the appropriate Smoluchowski equation, whereas
the EMF parameters have been derived from a mathematical
ansatz for the spectral density. Equation (B6) of Ref. 45 is
only the case for small RC/RL and weak ordering. Therefore,
the EMF formula should not be used when τs ∼ τm and when
Sf and Ss do not comply with weak local ordering (in principle,
it should not be used when τs ∼ τm is associated with a small
probe; as noted, this is a hypothetical case).

3.3 Methyl Dynamics

As pointed out in section “Diffusion-Restricted Local
Motion Coupled to the Global Motion”, in our use of SRLS
we treat methyl dynamics in much the same way as we
treat N–H bond dynamics. The complexity of the former
process is accounted for by low tensor symmetry, in particular
rhombic local ordering. MF treats methyl dynamics16,42 by
reinterpreting equation (8) to represent two local motions:
rotation around the C–CH3 axis described by Woessner’s
model,46 and axial fluctuations of the C–CH3 axis16,42. The
former motion is associated with P2(cos 110.5◦

)2 = 0.1 as
squared order parameter, the latter with S2

axis, and S2 is
set equal to 0.1 × S2

axis. The effective correlation time τe

represents both local motions.16,42

Inspection of Woessner’s theory46 shows that this model
does not include an order parameter. The trigonometric
expression P2(cos 110.5◦

) = (d2
00(110.5◦

)2 is the coefficient of
the j00(ω)-containing term of the measurable spectral density
(the latter comprises all three terms, jKK(ω),K = 0, 1, 2,
given that the (axial) local diffusion and magnetic tensor
frames are tilted). The correlation time τ⊥ represents in
Woessner’s model the isotropic global tumbling, whereas the
correlation time τ|| represents the local motion. The condition
that τ⊥ 
 τ|| has to be fulfilled. In the MF description of
methyl dynamics, one has τ⊥ = τ|| = τe, with τm representing
the global motion. This scenario is inconsistent from a physical
point of view.

3.3.1 Assessment of the MF Approach

SRLS is more general than MF, yielding the latter in
simple limits.9,10 The key elements that have been found
to be important with the SRLS model in actual cases are
not represented in MF. Consequently, the oversimplified MF
formulae absorb the unaccounted for effects and become
parameterizing entities with a much vaguer physical mean-
ing. We call this process “force-fitting”. The best-fit pa-
rameters emerging from the corresponding SRLS and MF
data-fitting processes have been compared.9,10 Large quanti-
tative differences and qualitatively different trends were ob-
tained; in some cases, functional dynamics were undetected or
misinterpreted.8 – 10,21,22,27 – 29,33 – 39
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The separation of the contributions of the global and local
motion variables is treated in a general manner in Appendix
B of Ref. 20. In this context, one might contemplate enhanced
descriptions of the local motion contribution. However,
experience12 – 15 shows that, even in the limit of frozen global
motion, the description of the local motion is not simple.

It may be concluded that MF often fails to extract
properly the important information on structural dynamics
inherent in the experimental data. In some cases, conceptual
misunderstandings arise because the physical parameters are
not well defined. For example, cross-correlation such as
encountered in the 15N–1H moiety signifies simultaneous
modulation of two different magnetic interactions (in this case
dipolar 15N–1H and 15N CSA) by the same dynamic process.
Some MF articles present cross-correlation in this context as
a phenomenon involving two different mechanisms.47

3.4 Additional Decoupled Protein Dynamics Developments

Halle and Wennerström developed equation (8) in the
context of 2H relaxation of water in heterogeneous systems.48

Rhombic magnetic tensors are allowed for. This generalization
applies only in the extreme motional narrowing limit for the
local motion (equation (137) of Chapter VIII of Ref. 24). In
a recent paper, Halle developed a number of MF TCFs that
feature intricate composites.49 On the basis of mathematical
arguments, some are considered valid in the mode-coupling
regime. Comments on SRLS, to which we responded in Ref.
50, were made.

Brainard and Szabo developed a model that may be
considered the generalization of the MF description of methyl
dynamics, with separate correlation times assigned to the
two local motions.51 It is indicated that factorization of the
generalized order parameter requires that both local motions
be in the extreme motional narrowing limit. Lipari and Szabo52

used the TCF of Ref. 40, which represents the CL
K=0(t)

component of the wobble-in-a-cone in a square-well potential
model. The pertinent order parameter is shown in Ref. 53
to be given by S2

0 = 〈P2(cos θ)〉 = CL
K=0(∞). In Ref. 54,

Padé approximants are developed for CL
K(t),K = 0, 1, and

2. Validity limits are determined, and analytical expressions
for 1/τK , and jK(0) are derived.54

These developments represent established standard treat-
ments of a physical model, which in its simplest form yields
CL(t) of equation (8). The established standard perspective
was replaced in Refs 16, 17 by the MF point of view.

4 MODELS FOR LOCAL PROTEIN MOTIONS

The CL
K=0(t) TCF of wobble-in-a-cone in a square-well

potential was obtained in Ref. 40 by solving the appro-
priate Smoluchowski equation. Wang and Pecora treated
wobble-in-a-cone for a rhombic probability distribution of
probe orientations. Numerical solutions, given in terms of Leg-
endre polynomials of noninteger degree, were obtained.55

Experimental 13C relaxation data from methionine methyl
groups of dihydrofolate reductase could be reproduced with
Woessner’s model46 combined with asymmetric (but not with
axial) fluctuations of the S– 13CH3 group.56 Concerted motions

along a lysine side chain were treated.57 Internal motions in
proteins were treated by Wallach,58 Woessner,46,59 Daragan
and Mayo,60 LeMaster,61 Korzhnev et al.,62 Atkinson and
Kieffer,63 and others.

The 3-D Gaussian axial fluctuations (3-D GAF) model64

provides an analytical description of anisotropic peptide
plane motion around Cα

i−1−Cα
i . Harmonic local fluctuations

are calculated with molecular dynamics (MD) simulations.
Experimental 15N and 13C′ spin relaxation data from 76% of
the peptide planes pertaining to rigid parts of the ubiquitin
backbone were properly reproduced.65 3-D GAF was not
designed to treat motions slower than approximately 10 ps.
Nevertheless, it is often used to treat local motions comparable
to the global motion, and even slower than it.66

5 ADDITIONAL DEVELOPMENTS INVOLVING SRLS

5.1 Molecular Dynamics

NMR-related order parameters have been derived from MD
trajectories according to the MF paradigm.10 The common
method utilizes the assumption that C(t) = CC(t) × CL(t).
The global motion is eliminated from the MD trajectory;
subsequently, S2 is set equal to the plateau value of
CL(t). This method applies when C(t) features a plateau
value.42 Another common method is to calculate S2 ≡∑
m=0,±1,±2

〈|Y2m(θ, ϕ)|〉2.16 This is accomplished using a simple

formula valid for strong axial local ordering in the extreme
motional narrowing limit for the local motion.67 Yet, this
formula is being used more generally, even in the presence
of nanosecond local motions. In some cases, it is considered
“exact”.68

A detailed discussion of spin-relaxation-related parameters
obtained with MD and comparison with their MF counterparts
appears in Appendix B of Ref. 10. It includes the few cases
in which more elaborate CL(t) functions were used, methods
for determining CC(t) with MD simulations were suggested,
and C(t) was derived directly from the MD trajectory. All of
these developments rely in one way or the other on the MF
paradigm.

5.2 Polycrystalline Powder Samples of Internally Mobile

Proteins

2H, 13C, and 15N NMR have been used to study protein
dynamics in the solid state.10 We developed the microscopic
order macroscopic disorder (MOMD) approach for analyzing
electron spin resonance (ESR) motional lineshapes from
membranes and proteins.11 MOMD represents the SRLS limit
for a protein whose overall motion is frozen. It was applied
successfully to liposomes, proteins, and DNA fragments.10

It can be adapted relatively easily to NMR applications by
including in the formalism the appropriate excitation pulse
schemes and magnetic interactions. This will make it possible
to study NMR spin relaxation from proteins in solution and in
the solid state with SRLS.

MOMD treats diffusive motion. Jump-type motions, which
often occur in solids, can be implemented by devising the
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appropriate Markov operators. Efforts to obtain high-resolution
dynamic NMR lineshapes from polycrystalline protein samples
are in progress.69,70

5.3 Residual Dipolar Couplings

SRLS applies to both isotropic5,8 – 10 and anisotropic6

solvents. The SRLS frame scheme relevant for RDC analysis
is shown in Figure 1(b). The diffusion frames M1F and M2F
of Figure 1(a) are not relevant here; on the other hand, the
global ordering frame AF and the molecular frame MF are
relevant.

The contribution of the dipolar interaction between two the
nuclei i and j to the spin Hamiltonian is given by the following
expression14,15,18:

Hij,DF =
∑
m,k

〈D2
m,k(ΩLF−DF)〉F (2,k)∗

ij,DF T
(2,m)
ij,LF (9)

where F
(2,k)
ij,DF denotes the components of the magnetic dipolar

tensor in the DF frame, and T
(2,m)
L denotes the components

of the relevant spin operators in the LF frame. D2
m,k are the

Wigner rotation matrix elements.
For rigid proteins, ΩLF−DF is given by the sum ΩLF−AF +

ΩAF−DF. That is, ΩLF−DF represents the combined effects
of rotations by both sets of Euler angles on the right of
this equation, where ΩAF−DF is time independent. Averaging
the appropriate trigonometric functions over the Euler angles
ΩLF−AF yields the global order parameters. The Euler
angles ΩAF−DF provide the structural/geometric information
of interest in the various structure-related applications of the
RDC.

The POMT associated with the global ordering (POMTg),
u(ΩLF−AF), is expanded in the full basis set of the Wigner
rotation matrix elements. With only the lowest order, L = 2,
terms preserved, one has6,7,18

u(ΩLF−AF) = U(ΩLF−AF)

kBT
≈ −a2

0D
2
0,0(ΩLF−AF)

− a2
2[D2

0,2(ΩLF−AF) + D2
0,−2(ΩLF−AF)] (10)

with a2
0 and a2

2 denoting the axial and rhombic potential
coefficients.

The global order parameters are defined as

〈D2
0m(ΩLF−AF)〉

=
∫

dΩLF−AFD
2
0m(ΩLF−AF) exp[−u(ΩLF−AF)]∫

dΩLF−AF exp[−u(ΩLF−AF)]
(11)

For at least threefold symmetry around the LC director
and at least twofold symmetry around the Z-axis of the
global ordering frame, only S2

g0 ≡ 〈D2
00(ΩLF−AF)〉 and S2

g2 ≡
〈D2

02(ΩLF−AF) + D2
0−2(ΩLF−AF)〉 survive.14,15

The RDC between the nuclei i and j is given by

RDCij =
(µ0

4π

)
γiγjh/(4π2rij

3)[S2
0P2(cos βAF−DF)

+
(

3

2

)1/2

(S2
2 sin2(βAF−DF) cos(2αAF−DF)] (12)

where µ0 is the permeability of vacuum, γi and γj are the
magnetogyric ratios of the nuclei i and j , h is the Planck

constant, and rij is the distance between the nuclei i and j .
Methods for determining the global diffusion tensor, A, have
been developed.71

In the presence of local motion, ΩLF−DF is given by
the sum ΩLF−AF + ΩAF−MF + ΩMF−VF + ΩVF−OF + ΩOF−DF
(Figure1b). That is, ΩLF−DF represents the combined effects
of rotations by all sets of Euler angles comprising this sum,
where ΩAF−MF, ΩMF−VF, and ΩOF−DF are time independent.
It is assumed that the POMTg and the POMT (equation
(5)) are uncorrelated.72 Hence, one may average separately
over ΩLF−AF to obtain S2

g0 and S2
g2, and over ΩVF−OF to

obtain S2
l0 and S2

l2. The SRLS approach treats the local
ordering by analogy with the global ordering. Thus, one has
S g, u(ΩLF−AF), and Peq,g for the global ordering and S l,
u(ΩVF−OF), and Peq,l for the local ordering.10

The contribution of the dipolar interaction between the
nuclei i and j to the spin Hamiltonian is given by10

Hij,DF =
∑

p,q,r,s

〈D2
0,p(ΩLF−AF)〉D2

p,q(ΩAF−MF)D
2
q,r (ΩMF−VF)

× 〈D2
r,s(ΩVF−OF)〉D2

s,0(ΩOF−DF)F
(2,0)∗
ij,DF T

(2,0)
ij,LF (13)

This expression represents the RDC between the nuclei i

and j for uncorrelated external and internal potentials. It is a
product of seven terms. The first term, specific to a given LC
medium, yields the global order parameters, S2

g0 and S2
g2. The

second term, also specific to a given LC medium, describes
the orientation of the AF frame with respect to the MF frame.
The third term represents the structural/geometric information
of interest in the various structure-related applications of the
RDC. The fourth term yields the local order parameters S2

l0
and S2

l2. The fifth term describes the relative orientation of the
local ordering and dipolar frames.

6 FUTURE DIRECTIONS

SRLS, based upon a two-body rotational Smoluchowski
equation, has served as a working model providing an
insightful picture of protein dynamics.8 – 10,21,22,27 – 29,33 – 39 It
can be improved in several ways. For example, three-body
Smoluchowski SRLS can incorporate domain or loop motion
in addition to local-probe motion and protein tumbling. An
approach based on FPK SRLS, which treats cases where
the overdamped diffusion limit is exceeded, can also be
implemented.

It will be useful to compare the results of SRLS analyses
with the results of MD simulations. Once the SRLS analysis
is completed, one can readily compute the relevant TCFs
of the D2

KK ′(Ω) from the best-fit parameters (MF can only
provide force-fitted D2

00(Ω) functions). Progress on how such
functions may be obtained from MD simulations is illustrated
in Refs 73, 74. Complex ESR lineshapes that agree very well
with experiment and have also been successfully analyzed by
SRLS are shown in those articles. Similar techniques should be
applicable to the reproduction of the relevant NMR relaxation
parameters.

In its present implementation, SRLS does not treat explicitly
correlated N–H bond motions along the polypeptide chain.
More advanced modeling, such as developed in Refs 75 (for
ESR) and 76 (for NMR), is required. Efforts along these lines
are under way.
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7 CONCLUSIONS

Experimental NMR spin relaxation data from proteins com-
prise unique information on local potentials, local ordering,
conformational distributions, global and local motional rates,
associated activation energies, mode-coupling, and features of
local geometry. This information can be extracted insight-
fully with stochastic models. In many cases, the Smoluchowski
implementation of SRLS provides an appropriate tool for ac-
complishing this. One can extend the scope of SRLS to study
structural dynamics of proteins as outlined in the section “Fu-
ture Directions”.

The SRLS approach is a comprehensive one. It can treat in
a consistent manner spin relaxation, polycrystalline lineshapes,
and RDCs.
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